Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biostatistics ; 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2281852

ABSTRACT

Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.

2.
Spat Stat ; 49: 100540, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1440369

ABSTRACT

Spatial dependence is usually introduced into spatial models using some measure of physical proximity. When analysing COVID-19 case counts, this makes sense as regions that are close together are more likely to have more people moving between them, spreading the disease. However, using the actual number of trips between each region may explain COVID-19 case counts better than physical proximity. In this paper, we investigate the efficacy of using telecommunications-derived mobility data to induce spatial dependence in spatial models applied to two Spanish communities' COVID-19 case counts. We do this by extending Besag York Mollié (BYM) models to include both a physical adjacency effect, alongside a mobility effect. The mobility effect is given a Gaussian Markov random field prior, with the number of trips between regions as edge weights. We leverage modern parametrizations of BYM models to conclude that the number of people moving between regions better explains variation in COVID-19 case counts than physical proximity data. We suggest that this data should be used in conjunction with physical proximity data when developing spatial models for COVID-19 case counts.

SELECTION OF CITATIONS
SEARCH DETAIL